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Functional integral approach to multipoint correlators in
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‡ Consejo Nacional de Investigaciones Cientı́ficas y T́ecnicas, Argentina
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Abstract. We extend a previously developed technique for computing spin–spin critical
correlators in the two-dimensional (2D) Ising model, to the case of multiple correlations. This
enables us to derive Kadanoff–Ceva’s formula in a simple and elegant way. We also exploit a
doubling procedure in order to evaluate the critical exponent of the polarization operator in the
Baxter model. Thus we provide a rigorous proof of the relation between different exponents, in
the path-integral framework.

Since Schultzet al [1] showed that Onsager’s solution of the two-dimensional (2D) Ising
model could be simply explained in terms of a single Majorana fermion, there has been
an increasing interest in the study of 2D statistical mechanics models by means of field-
theoretical methods. In the same vein, Luther and Peschel [2] proved that the scaling
regime of the eight-vertex (Baxter [3]) model can be described in the continuum limit in
terms of a Thirring [4] Lagrangian. In this way, the 2D Ising and Baxter models became
fruitful testing grounds for new ideas and computational methods. In a previous work it has
been shown how to evaluate 2-point correlators in 2D systems [5], through a path-integral
approach to bosonization [6]. In particular, the critical behaviour of the Ising (on-line)
spin–spin correlation function was obtained, by using a slightly modified version of the
identity derived by Zuber and Itzykson [7]:

F2
2(x1, x2) = 〈σ(x1)σ (x2)〉2 =

〈
expπ

∫ x2

x1

dz J0(z)

〉
(1)

whereJµ is the Dirac fermion current which is obtained out of the original Majorana fields
after squaring the correlator.〈〉 means vacuum expectation value (VEV) in a model of free
massless fermion fields.

The purpose of this paper is twofold. On the one hand, we extend the above-mentioned
method to compute the 2n-point correlator. Thus, we provide an alternative derivation
of Kadanoff–Ceva’s formula [8] that could be useful when considering certain non-trivial
extensions of the Ising model such as the off-critical [9] and the defected [10] cases. On
the other hand, we adapt the doubling technique [11] which led to (1), in order to calculate
the correlation function of the polarization operator in the Baxter model [3]. This, in
turn allows us to provide a path-integral confirmation of the relations between different
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critical exponents (those corresponding to energy density, crossover and polarization), a
result previously established by Drugowich de Felicio and Koberle [12] in the operator
framework.

For the sake of clarity we shall begin by briefly summarizing the main points of the
spin–spin correlator calculation. In [5] the line integral in (1) was written as∫ x2

x1

dz J0(z) =
∫

d2x 9̄ /A9

whereAµ is an auxiliary vector field with components

A0(z0, z1) = δ(z0)θ(z1− x1)θ(x2− z1)

A1(z0, z1) = 0.

This simple manipulation enabled us to express the squared spin–spin correlator in terms
of fermionic determinants

F2
2(x1, x2) = det(i/∂ + π/A)

det i/∂
(2)

where the coordinate dependence in the right-hand side of (2) is, of course, contained in/A.
Finally, one performs a change of path-integral fermionic variables which is chosen so

as to decouple fermions from the background fieldAµ. It is interesting to note that, in this
formulation, the desired 2-point function is just the square root of the Fujikawa Jacobian
JF [13] associated with the transformation in the fermionic measure:

F2(x1, x2) = JF(x1, x2)
1/2. (3)

As shown in [14], this Jacobian must be computed with a gauge-invariant regularization
prescription in order to avoid a linear divergence (this gauge invariance is a consequence
of a symmetry in the original lattice system [15]). This procedure then leads to the well
known power-law decay of the spin–spin on-line function, with exponent equal to1

4.
Let us now show how to extend the above depicted technique to the computation of

the 2n-point spin correlation function at criticality. To this end, we follow [16] where it
was shown that, after squaring the correlator, each pair of consecutive spin variables can
be identified with an exponential similar to the one appearing in (1). (See also [17] for a
very interesting study on the doubling procedure and the operator content of fermion fields
in the Ising model.) We can then express the squared 2n-point correlator as

F2n
2(x1, . . . , x2n) =

〈 2n∏
i=1

σ(xi)

〉2

=
〈 ∏
i=1,odd

expπ
∫ xi+1

xi

dz J0(z)

〉
(4)

where, as before,〈〉 on the right-hand side means VEV to be evaluated in a model of
massless Dirac fermions. It is apparent that each line integral in (4) can be cast in the form∫ xi+1

xi

dz J0(z) =
∫

d2z Jµ(z)Aµ(z; xi, xi+1)

where we have introduced then classical singular potentials

A0(z; xi, xi+1) = δ(z0)θ(z1− xi)θ(xi+1− z1)

A1(z; xi, xi+1) = 0.

In order to rewrite (4) in a more compact way we construct a new vector fieldCµ as a
simple superposition ofAµ’s:

C0(z) =
2n−1∑
i=1,odd

A0(z; xi, xi+1) (5)

C1(z) = 0. (6)
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Thus, the 2n-point function can be expressed in terms of fermionic determinants

F2n
2 = det(i/∂ + π/C)

det i/∂
(7)

exactly as it happens in then = 1 case (see (2)), but withAµ replaced byCµ.
The next step is to writeCµ in terms of scalar functions8c andηc as

Cµ = εµν∂ν8c + ∂µηc. (8)

Now we perform a decoupling change of path-integral fermionic variables with chiral and
gauge parameters8c andηc, respectively:

9 = e−π(γ58c+iηc)χ (9)

9̄ = χ̄ e−π(γ58c−iηc). (10)

A detailed computation of the Fujikawa JacobianJF associated to this change has been
given many times in the literature (see, for instance, [6]); here we just write down the final
result:

JF = exp
π

2

∫
d2x 8c �8c. (11)

We then get

F2n
2(x1, . . . , x2n) = JF(x1, x2, . . . , x2n). (12)

Therefore we see that, in our formulation, the squared multipoint correlator can be identified
with a fermionic Jacobian, exactly as in the 2-point case. At this stage one has to solve
the system of differential equations for8c andηc, obtained by replacing (8) in (5) and (6).
Finally, by inserting the result in (11) and (12), one obtains

F2n(x1, . . . , x2n) =
(∏

even|xij |∏
odd |xij |

)1/4

(13)

wherei > j and even (odd) refers to a constraint oni + j ; i, j = 1, 2, . . . ,2n. We have
also set an ultraviolet cut-off, which divides the coordinate differences, equal to 1. This
formula exactly coincides with the famous Kadanoff–Ceva’s result [8].

Let us now study the Baxter model [3], which can be considered as two Ising
systems interacting through their spin variables (this model is related, through a duality
transformation, to the Ashkin–Teller model [18]). As shown by Luther and Peschel [2], the
scaling limit of this model is described by the Thirring [4] interaction

Lint = −λJµJµ (14)

where, as before,Jµ is the Dirac fermionic current and the coupling constantλ is
proportional to the four-spin coupling of the original lattice model. The Baxter model
is known to have two natural order parameters, the magnetization and the polarization
〈P 〉 = 〈σisi〉, whereσi andsi are the spin operators of each Ising system. In the continuous
formulation the 2-point correlator for the polarization operator is given by

〈P(x)P (y)〉λ = 〈σxsxσysy〉λ
where 〈〉λ means VEV with respect to the fermionic model defined by (14). Forλ = 0
the above expression becomes the squared Ising correlator. This suggests the following
identification:

〈P(0)P (R)〉λ =
〈

exp π
∫ R

0
dz J0(z)

〉
λ

.
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The right-hand side of the precedent equation can be computed by employing a slightly
modified version of the method described above. Indeed, it is easy to show that the
introduction of an auxiliary vector fieldAµ through a Hubbard–Stratonovich identity, allows
one to write

〈P(0)P (R)〉λ = Z

Z′
(15)

with

Z =
∫
DAµ exp

[
−
∫

d2x
A2

2

]
det(i/∂ + (2λ)1/2/B) (16)

and

Z′ =
∫
DAµ exp

[
−
∫

d2x
A2

2

]
det(i/∂ + (2λ)1/2/A) (17)

where

Bµ = εµν∂ν8B + ∂µηB
Aµ = εµν∂ν8+ ∂µη
8B = 8+ π√

2λ
8c

ηB = η + π√
2λ
ηc.

Let us stress that, in contrast to the previous calculation of the Ising correlator, in the
present case one has to consider quantum fields8 andη whose dynamics plays a crucial
role in the following computation. Concerning the classical functions8c andηc, they can
be determined exactly as in the Ising case, i.e. using formulae (5), (6) and (8) forn = 1.

We shall now turn to treat the fermionic determinants appearing in (16) and (17) by
means of decoupling changes of fermionic variables, similar to the one defined by equations
(9) and (10), but with parameters8B andηB in the form:

9 = e−
√

2λ(γ58B+iηB)χ

9̄ = χ̄ e−
√

2λ(γ58B−iηB).

The corresponding Jacobian is given by

JF = exp
λ

π

∫
d2x

(
8+ π√

2λ
8c

)
�
(
8+ π√

2λ
8c

)
.

Of course, this result must be used in (16), whereas the same expression, but with8c = 0
is to be employed in (17). In so doing one readily discovers that, due to the fact thatJF

does not depend on the fieldη, this field becomes decoupled from8 in bothZ andZ′. As
the corresponding functional integrals overη coincide, they cancelled out when performing
the quotient in equation (15) and one then gets

〈P(0)P (R)〉λ = 〈P(0)P (R)〉0
〈

exp

[√
2λ
∫

d2x 8∂µ∂µ8c

]〉
where the first factor on the right-hand side corresponds to the doubled Ising correlator,
whereas the second one is a VEV to be evaluated for a model of free scalars8 with
Lagrangian density given by

L =
(

1

2
+ λ

π

)
∂µ8∂µ8.



Multipoint correlators in two-dimensional critical systems 1847

As it is well known this computation can be done by a standard shift in the bosonic variable
8. The final result is

〈P(0)P (R)〉λ =
( a
R

)21P
(18)

where a is an ultraviolet cut-off and1P is the critical exponent associated with the
polarization operator, for which we obtain

1P = 1

4

1

(1+ (2λ/π)) . (19)

Recalling the results for the energy density (ε) and the crossover (Cr) operators [5, 12], one
obtains

41P = 1ε = (1Cr)
−1 (20)

which is the relation predicted by several authors [19, 20] and first derived by Drugowich
de Felicio and Koberle [12] in the operator framework.

In summary, we have extended a functional approach [5], previously used to compute
2-point functions in 2D critical systems, to the case in which multipoint correlators are
considered. In particular, we provided an alternative derivation of Kadanoff and Ceva’s
result [8] for the 2n-spin on-line function. Our contribution can be viewed as a complement
to previous works based on operational bosonization, where 4-point functions were explicitly
calculated [7, 21]. We feel that our formulation could be more practical when considering,
for instance, non-critical correlations [9]. Indeed, in this case one expects to have a
temperature-dependent (‘massive’) determinant, that can be easily handled by following
the perturbative strategy of [22]. The study of multipoint correlators in the defected Ising
model [10] can be also envisaged in our scheme.

We have also computed the 2-point function describing the critical fluctuations of the
Baxter polarization operator. Thus we obtained its corresponding critical index. This
completed the path-integral proof of the relationship between energy density, crossover and
polarization exponents, which had been initiated in [5].
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